Kamis, 27 November 2014

Komponen Aktif Dan Pasif, Hukum Kirchoff 1 Dan 2 , Hukum Ohm


Komponen Aktif dan Komponen Pasif
Komponen aktif dan komponen pasif adalah dua jenis komponen elektronika yang selalu ada dalam setiap rangkaian elektronika.
komponen-aktif.jpg
Komponen aktif ialah jenis komponen elektronika yang memerlukan arus listrik agar dapat bekerja dalam rangkaian elektronika yang dapat menguatkan dan menyearahkan sinyal listrik, serta dapat mengubah energi dari satu bentuk ke bentuk lainnya.
Contoh komponen aktif adalah:
a. Transistor: merupakan komponen elektronika dengan 3 elektrode yang berfungsi sebagai penguat atau saklar. Jika sebagai penguat maka transistor dapat menguatkan sinyal listrik. Dalam hal ini inputnya dimasukkan ke titik B dan outputnya diambil dari titik A.
b. Diode: adalah komponen elektronika dengan dua elektrode, yang dapat dipakai untuk menyearahkan sinyal listrik, sehingga termasuk komponen aktif.
c. LED (light emitting diode): Jika dihubungkan dengan sumber tegangan listrik maka LED tersebut akan menyala. Jadi, LED termasuk komponen aktif karena dapat mengubah suatu bentuk energi (listrik) menjadi bentuk lainnya (cahaya).
Komponen pasif adalah jenis komponen elektronika yang bekerja tanpa memerlukan arus listrik sehingga tidak bisa menguatkan dan menyearahkan sinyal listrik serta tidak dapat mengubah suatu energi ke bentuk lainnya.
komponen-pasif.jpg
Contoh komponen pasif adalah:
a. Resistor: adalah komponen elektronika yang berfungsi membatasi atau menghambat arus listrik. Karena tidak dapat menguatkan sinyal maka resistor termasuk komponen pasif.
b. Kapasitor: adalah merupakan komponen elektronika yang berfungsi untuk menyimpan medan listrik, dapat juga berfungsi untuk memblokir arus DC dan meneruskan arus AC. Karena tidak dapat menguatkan, menyearahkan dan mengubah suatu energi ke bentuk lainnya, maka kapasitor termasuk komponen pasif.
c. Induktor: adalah termasuk komponen pasif karena tidak dapat menguatkan dan menyearahkan sinyal maupun mengubah suatu energi ke bentuk lainnya. Bagi arus DC induktor bersifat mengalirkannya tetapi bagi arus AC induktor bersifat menghambat.
Kedua jenis komponen ini hampir selalu digunakan bersama - sama, kecuali dalam rangkaian - rangkaian pasif yang hanya memakai komponen - komponen pasif saja misalnya: rangkaian baxandall pasif, rangkaian tapis pasif dan sebagainya.
Sedangkan komponen IC (Integrated Circuit) adalah gabungan dari komponen aktif dan komponen pasif yang disusun menjadi sebuah rangkaian elektronika dan kemudian diperkecil ukuran fisiknya.

HUKUM KIRCHOFF 1 DAN 2





Hukum kirchoff merupakan salah satu  teori elektronika untuk menganalisa lebih lanjut tentang rangkaian elektronika. Dengan hukum kirchhoff kita dapat menganalisa lebih lanjut tentang arus yang mengalir dalam rangkaian dan tegangan yang terdapat pada titik-titik rangkaian elektronika. Hukum kirchhoff ini berlaku untuk analisis rangkaian loop tertutup seperti pada contoh rangkaian berikut.
Dalam hukum kirchoff dikenal 2 teori yang dapat digunakan untuk analisis rangkaian elektronika yaitu Hukum KiRchoff Arus (KCL, Kirchoff Current Law) dan Hukum Kirchoff Tegangan (KVL, Kirchoff Voltage Law).

Hukum  Kirchoff 1 (KCL, Kirchoff Current Law)

http://elektronika-dasar.com/wp-content/uploads/2012/06/Percobaan-Hukum-Ohm.pngImage:volt ampere.JPGHukum kirchoff arus atau yang sering disebut dengan Hukum  Kirchoff 1 merupakan hukum kekekalan muatan listrik yang menyatakan bahwa jumlah muatan listrik yang ada pada sebuah sistem tertutup adalah tetap. Oleh karena itu, Hukum Kirchoff 1 mengatakan bahwa jumlah arus yang masuk pada suatu titik percabangan sama dengan jumlah arus yang keluar dari titik percabangan tersebut. Dengan kata lain, “jumlah aljabar semua arus yang memasuki sebuah percabangan sama dengan nol”. Secara matematis adalah :
I masuk = I keluar
∑ Itot = 0
Arus yang melewati titik cabang O adalah
I1 + I2 + I4 – I3 – I5 = 0
Atau
I1 + I2 + I4  =   I3 + I5
Arah setiap arus ditunjukkan dengan anak panah, jika arus berharga positif maka arus mengalir searah dengan anak panah, demikian sebaliknya.
Hukum Kirchoff 2 (KVL, Kirchoff Voltage Law)
Pada hukum kirchoff tegangan atau yang sering disebut hukum kirchoff ke II ini menyatakan “Pada setiap rangkaian tertutup (loop), jumlah penurunan tegangan adalah nol” . dapat  dinyatakan dengan persamaan matematika sebagai berikut :
V + ∑ I.R = 0
Dari rangkaian sederhana di atas, maka akan berlaku persamaan berikut (anggap arah loop searah arah arus)
I . R + I . r - E = 0..............1)
E = I (R + r)
Persamaan 1 dapat ditulis dalam bentuk lain seperti berikut :
I . R = E - I . r
Di mana I . R adalah beda potensial pada komponen resistor R, yang juga sering disebut dengan tegangan jepit 
http://www.crayonpedia.org/wiki/images/0/05/Soal_9.5_b.JPG




Pengertian, Rumus dan Bunyi Hukum Ohm – Dalam Ilmu Elektronika, Hukum dasar Elektronika yang wajib dipelajari dan dimengerti oleh setiap Engineer Elektronika ataupun penghobi Elektronika adalah Hukum Ohm, yaitu Hukum dasar yang menyatakan hubungan antara Arus Listrik (I), Tegangan (V) dan Hambatan (R). Hukum Ohm dalam bahasa Inggris disebut dengan “Ohm’s Laws”. Hukum Ohm pertama kali diperkenalkan oleh seorang fisikawan Jerman yang bernama Georg Simon Ohm (1789-1854) pada tahun 1825. Georg Simon Ohm mempublikasikan Hukum Ohm tersebut pada Paper yang berjudul “The Galvanic Circuit Investigated Mathematically” pada tahun 1827.

Bunyi Hukum Ohm

Pada dasarnya, bunyi dari Hukum Ohm adalah :
“Besar arus listrik (I) yang mengalir melalui sebuah penghantar atau Konduktor akan berbanding lurus dengan beda potensial / tegangan (V) yang diterapkan kepadanya dan berbanding terbalik dengan hambatannya (R)”.
Secara Matematis, Hukum Ohm dapat dirumuskan menjadi persamaan seperti dibawah ini :
V = I x R
I = V / R
R = V / I
Dimana :
V = Voltage (Beda Potensial atau Tegangan yang satuan unitnya adalah Volt (V))
I = Current (Arus Listrik yang satuan unitnya adalah Ampere (A))
R = Resistance (Hambatan atau Resistansi yang satuan unitnya adalah Ohm (Ω))
Dalam aplikasinya, Kita dapat menggunakan Teori Hukum Ohm dalam Rangkaian Elektronika untuk memperkecilkan Arus listrik, Memperkecil Tegangan dan juga dapat memperoleh Nilai Hambatan (Resistansi) yang kita inginkan.
Hal yang perlu diingat dalam perhitungan rumus Hukum Ohm, satuan unit yang dipakai adalah Volt, Ampere dan Ohm. Jika kita menggunakan unit lainnya seperti milivolt, kilovolt, miliampere, megaohm ataupun kiloohm, maka kita perlu melakukan konversi ke unit Volt, Ampere dan Ohm terlebih dahulu untuk mempermudahkan perhitungan dan juga untuk mendapatkan hasil yang benar.

Contoh Kasus dalam Praktikum Hukum Ohm

Untuk lebih jelas mengenai Hukum Ohm, kita dapat melakukan Praktikum dengan sebuah Rangkaian Elektronika Sederhana seperti dibawah ini :
Rangkaian untuk Praktikum Hukum Ohm
Kita memerlukan sebuah DC Generator (Power Supply), Voltmeter, Amperemeter, dan sebuah Potensiometer sesuai dengan nilai yang dibutuhkan.
Dari Rangkaian Elektronika yang sederhana diatas kita dapat membandingkan Teori Hukum Ohm dengan hasil yang didapatkan dari Praktikum dalam hal menghitung Arus Listrik (I), Tegangan (V) dan Resistansi/Hambatan (R).

Menghitung Arus Listrik (I)

Rumus yang dapat kita gunakan untuk menghitung Arus Listrik adalah I = V / R
Contoh Kasus 1 :
Setting DC Generator atau Power Supply untuk menghasilkan Output Tegangan 10V, kemudian atur Nilai Potensiometer ke 10 Ohm. Berapakah nilai Arus Listrik (I) ?
Masukan nilai Tegangan yaitu 10V dan Nilai Resistansi dari Potensiometer yaitu 10 Ohm ke dalam Rumus Hukum Ohm seperti dibawah ini :
I = V / R
I = 10 / 10
I = 1 Ampere
Maka hasilnya adalah 1 Ampere.
Contoh Kasus 2 :
Setting DC Generator atau Power Supply untuk menghasilkan Output Tegangan 10V, kemudian atur nilai Potensiometer ke 1 kiloOhm. Berapakah nilai Arus Listrik (I)?
Konversi dulu nilai resistansi 1 kiloOhm ke satuan unit Ohm. 1 kiloOhm = 1000 Ohm. Masukan nilai Tegangan 10V dan nilai Resistansi dari Potensiometer 1000 Ohm ke dalam Rumus Hukum Ohm seperti dibawah ini :
I = V / R
I = 10 / 1000
I = 0.01 Ampere atau 10 miliAmpere
Maka hasilnya adalah 10mA

Menghitung Tegangan (V)

Rumus yang akan kita gunakan untuk menghitung Tegangan atau Beda Potensial adalah V = I x R.
Contoh Kasus :
Atur nilai resistansi atau hambatan (R) Potensiometer ke 500 Ohm, kemudian atur DC Generator (Power supply) hingga mendapatkan Arus Listrik (I) 10mA. Berapakah Tegangannya (V) ?
Konversikan dulu unit Arus Listrik (I) yang masih satu miliAmpere menjadi satuan unit Ampere yaitu : 10mA = 0.01 Ampere. Masukan nilai Resistansi Potensiometer 500 Ohm dan nilai Arus Listrik 0.01 Ampere ke Rumus Hukum Ohm seperti dibawah ini :
V = I x R
V = 0.01 x 500
V = 5 Volt
Maka nilainya adalah 5Volt.

Menghitung Resistansi / Hambatan (R)

Rumus yang akan kita gunakan untuk menghitung Nilai Resistansi adalah R = V / I
Contoh Kasus :
Jika di nilai Tegangan di Voltmeter (V) adalah 12V dan nilai Arus Listrik (I) di Amperemeter adalah 0.5A. Berapakah nilai Resistansi pada Potensiometer ?
Masukan nilai Tegangan 12V dan Arus Listrik 0.5A kedalam Rumus Ohm seperti dibawah ini :
R = V / I
R = 12 /0.5
R = 24 Ohm
Maka nilai Resistansinya adalah 24 Ohm